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We have concentrated most of our attention on transterred-electron (including *Gunn™) oscilla-
tors, There is @ common notion that Gunn oscillators are old-fashioned and that no further
improvements are possible. However, the new application in planar Circuits creates new nceds
and constraints that were not present in older waveguide-based work. Furthermore, the advent
of MBE makes possible new device structures which were not possible in the past. One such
structure is presently being used by us to construct a novel multi-domain Gunn device which is
expected to give order-of-magnitude improvement in output power over conventional Gunn
devices.

N

Gunn oscillators have several advantages over MESFET oscillators. One is that unlike MES-
FETs, which often have very demanding structures with quarter-micron features, Gunn diodes
are extremely simple to fabricate. This represents a considerable advantage in terms of cost.
vield, and reliability, and makes Gunn diodes exceptionally suitable for use in arrays. Gunn
devices also have less noise than MESFET oscillators. As compared with IMPATT oscillators.
Gunn devices have less power and smaller frequency range, but have an advantage in terms of
noise. The power efficiency of Gunn oscillators is typically rather low, which makes heat dis-
sipation a significant factor.

~.

In our research\izye have developed the concept of multi-domain Gunn diodes. These are similar
10 ordinary Guiin diodes, with the diitereace that several domains move simultaneousty trom
cathode to anode. We have shown that under proper conditions an N-domain diode can have
N* times the output power of a single-domain diode. This is true even when thermal effects are
taken into account. Performance of the multi-domain devices ncs been studied by means of a
partial-differential-equation-solver program written here. We find that the doping profile of the
device must be controlled within approximately 20%, in order for the several sections of the
device to oscillate in phase. This doping accuracy appears to be well within the capabilities of
molecular-beam epitaxy.

The invention of the multi-domain diode is the principal result of our work with Gunn oscilla-
tors. It is described in our paper "Multi-domain Gunn Diodes," by J. Tsay, S.E. Schwarz, S.
Raman, and J.S. Smith, which has been submitted to Microwave and Optical Technology
Letters. We feel that this invention will be important because it will greatly increase the low-
noise oscillator power available in planar circuits. It should find use in MMIC communication
and radar systems. For example, a 3-domain device should result in an increase in output
power by a factor of 9 at 30 GHz, resulting in an estimated output power of 1.8 watts. We are
now constructing examples of these new devices and hope to test them within the next six
months.

In connection with the work just descvihed, we have also investigated other dircctions possible
with transferred-clectron devices. W. be'ive that in MMIC work, "hdrizontal" devices (i.c..
with current flow parallel to the wafer ace) should prove useful. Horizontal devices lend
themselves much more readily to the fabrication techniques used in MMICs, resulting in
simpler structures, Arrays of devices will be easier to construct than in the case of vertical dev-
ices. The geomectrical form cf horizontal devices would be less ideal: this leads us to suggest
going away from transit-time operation, and making use of non-resonant modes of the
negative-resistance device. From computation we find that" i)roadband negative resistance can
be obtained, suggesting the possibility of widely tunable Voltage-tuned oscillutors. This is a
promising avenue for further work.




“We have also studied the design of resonators for planar oscillators. Circuit losses can play a
very important role in determining efficiency and output power. In planar circuits, particularly
at high frequencies, radiative loss can be a significant component of the loss. We are studying
means of designing planar resonators with reduced radiation loss. Electromagnetic computa-
tions are being made, supported by expenments with large-scale 1-GHz models. This work 1s
being continued.

“A well-known problem in MMIC technology is the difficulty of making adjustments on a cir-
cuit once it has been fabricated. We have investigated ways of making such adjustments.
Several techniques werc demonstrated, ranging from simple mechanical methods to laser photo-
chemical etching.

"Another component of our work undcr this grant has concermed a technique for making meas-
urements on working MMICs. At present it is difficult to find out the current or voltage at a
given point in a working circuit, due to the inconvenience of using probes in high-frequency
circuits only a millimeter or so in size. We have developed a non-contacting magnetic probe,
whiich couples to currents in the circuit under test like the secondary of a transformer. The
probe is about 200 microns in dimension and is made by microfabrication techniques. Exten-
sive design work has been performed using enlarged models at frequencies of 1 GHz and
below. Recently microfabricated probes have been built and tested at 33 GHz. Good prelim-
inary results have been obtained. Because of their simplicity, we believe these probes may
become important tools for MMIC design. In addition, they can also be used for production
testing. Two probes can be used, one for signal injection and another for detection. Such a pair
of probes can be moved across a waier to test individual circuits before the wafer is diced.

Lastly, we have investigated the interesting physical problem of low-frequency oscillations in
semi-insulating gallium arsenide. It is found that when a small electric field is applied to this
material, low-frequency (audio) current oscillations are observed. This phenomenon has been
known for twenty years, but appears never to have been explained. It is thought to be related
to the behavior of deep traps in the semi-insulating material.- The effect is troublesome in
MMICs, where it can add an undesired audio modulation. Furthermore, it is probably related
to other undesirable trap-related effects, such as back-gating. We expended some effort in
studying the physics of the oscillations in order to determine their cause, but were unable to
reach a conclusion. This is a very interesting fundamental problem, and we hope to approach it
again at a suitable time.
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Research on Monolithic Millimeter-wave Devices

Final Report

I. Introduction

In designing oscillators based on two-terminal devices, it is usually desirable to
present the active device with an impedance that results in maximally efficient escilla-
tion at the desired frequency. This requirement conflicts with efforis to iicrease the
output power of the oscillator by increasing the cross-sectional area of the diode.
Increasing the area of the diode reduces its impedance, and therefore reduces the
impedance that the circuit must present across the diode’s terminals. However, circuit
losses impose a limit on diode size, because the lower the diode’s impedance, the
larger the circuit losses become.[1] In this paper we propose multi-domain Gunn
diodes, which are in essence series arrays of ordinary Gunn diodes that can be con-
structed by molecular-beam epitaxy. Such devices would have larger impedance than
conventional diodes, leading potentially to large increases in output power.

To illustrate the importance of device impedance, let us consider the circuit
shown in Fig. 1. Here a negative-differential-mobility (NDM) device is coupled to a
50-ohm load by means of a transformer. The wansformer has reflection coefficient p
and transmission coefficient t. Because of the wransformer’s internal loss mechanisms.

a fraction A of the power incident on it is lost; that is,

Ipl2 + 1712 + A = 1 (1)

Let the power produced by the NDM diode be P,, and let the powers carried on the

line between diode and transformer to the right and left be P, and P_ respectively.




Hence P, =P, -P_ and P_= Ip1? P,. The power P, delivered to the load is given by
P, = 112 P,. Combining these equations we find that the circuit efficiency E., defined

by Ec = P_/Pp, is given by

A
Er = 1 = =———— (2
¢ 1-ipl? )

Thus the effect of the circuit loss A becomes magnified as |p!? approaches unity. The
value of Ipi? is determined by G, and B, the optimal load conductance and suscep-
tance of the NDM diode:

2 _ (1-x)*+ (Kx)? 3)

P e :

where x = GpZ,, K = Bp /Gp, and Z, is the characteristic impedance of the transmission
line. As the diode cross-sectional area is made larger, both G, and B, increase in pro-
portion to area, causing Ipl? to approach unity and the circuit efficiency to approach
zero.

The loss mechanisms just described lead to the well-known "power-frequency
limitation,” a general limitation of transit-time devices. The power produced by the
diode is P, = V2Gp /2, where V, the ac voltage across the diode, is equal to E,./ and !
is the length of the diode. We can set E,. = oF, where F is the critical electric field.
The applied dc field £, is typically near (a+1)F, and the normal range of a is 0.6-2.5
(corresponding to E, in the range 5,000-11,000 V/cm), with maximum output power
occurring near the upper value.[2] Setting /=v_/f, we estimate the ac power of a

single-domain diode to be

1 . .
P, = ?f_f [orF Ve c,,,j E))

1o




Using equations (2)-(4) and assuming that A« 1, we find that P, is maximized when

Gp takes the value

2

Gopt = m (5

The resulting maximum output power of the single-domain device is then

- a?F2v2 6)

P
T O2fKEe ) ZoA

Thus we have the "power-frequency” limitation, according to which output power
decreases as f2. We note that this limitation applies independently of thermal limira-
tions, which will be considered below in Section IV.

In this paper we propose a modified Gunn diode in which several domains simul-
taneously move from the cathode toward the anode. In this case the total device
length L is given by L = Nv,,/f, where N is the number of equally-spaced domains.

The power-frequency limitation then becomes

a?F2v2
(K*+1)ZoA |

N2

e (7)

Thus in the absence of heat limitations an N-domain diode should be able to deliver »?
times as much power at a given frequency as a conventional singie-domain diode. The
reason for the improvement is that an ¥ -domain diode has N times the impedance of a
single-domain diode at the same frequency. Therefore its cross-sectional area can be
increased by a factor of ¥ without exceeding the maximum value of conductance the

circuit can provide without excessive circuit loss. The volume of the diode and its

)




power are increased by N-.

Series connection of several Gunn diodes was proposed in 1968 by Thim [3],
who noted the potential relaxation of the power-frequency limitation. By stacking
several wafers of 40-micron thickness, he was abie to demonstrate series operation at
1.3 and 2.5 GHz. The idea was carried further by Slater and Harrison [4], who
demonstrated two- and three-domain operation at 2 GHz. using simple "horizontal”
diodes (i.e., with current flow paralle! to the semiconductor surface). Domains were
nucleated by a declivity scratched in the surface of the semiconductor. Their diodes
operated in a quenched hybrid mode. In contrast, the device to be considered here is
"vertical”, and uses highly controllable epitaxial layers, made by molecular beam expi-
taxy, to nucleate domains. We have found that it is also possible to quench domains
by means of other epitaxial layers. This makes it possible to operate the dcvice in the
more stable transit-time mode, with efficiency comparable to that of conventional

single-domain diodes.

II. Domain Quenching Mechanism

It is clearly possible to simultaneously nucleate a number of domains ai arbitrary
positions inside a diode by placing doping notches at the desired points. For efficient
operation in the transit-time mode it is also necessary that all domains be quenched at
aprroximately the instant that the device voltage reaches minimum. In reference [4]
this was accomplished by operating the device in a hybrid mode, in which the device
voltage instantaneously decreases to a low value at which all domains are quenched.
Operation in the hybrid mode, however, suffers from drawbacks similar to those of the

LSA mode, such as poor high-frequency operation and instability. Instead, we propose
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to place regions of high doping at positions at which domains are to be quenched. An
advantage of this "built-in" domain quenching mechanism is that it removes the heated
electrons from the active region very quickly, allowing a new domain to be formed
near the cathoue. In the LSA and hybrid modes it is nccessary to give the carriers
time ‘v cool, which places an upper limit on the frequency of operation. The fre-
quency range of the proposed device, however, should be about the same as that of
conventional transit-time dicdes. A doping profile for the case of a two-mode device
1s given in Figure 2.

By means of a simplified model we can illustrate the mechanism of domain
quenching and estimate the necessary dimensions of the heavily doped regions. Let us
model a mature domain, moving at saturation velocity, by a rectangular field distribu-
tion, such as the solid curve in Fig. 3(a). This field is bounded by charge conccntra-
tions of opposite sign, as shown in Fig. 3(b). When the leading edge of the domain
reaches the heavily doped region, the charges at that end of the domain encounter a
lower eiectric field and move more slowly. This allows the charges at the trailing
edge of the pulse to catch up. While this is happening, the electric field within the
domain (according to Gauss’ law) stays nearly constant; thus the voltage drop across
the domain decreases toward zero. Since the voltage across the entire diode is not
changing, the voltage drop across the domain is replaced by increased tield in the dop-
ing notches, causing new domains to nucleate.

The velocity of carriers in the dnift region is approximately vy. If we assume
that the charges arriving with the domain have little influence on the field in the
heavily doped region, the velocity of those charges, once inside that region, will be

approximately v, = (NyNjv,, where N, is the donor concentration in the drift

N




region and N, the donor concentration in the heavily doped region. While the domain
is entering the heavily doped region, its length is decreasing at the rate v, ~ vy... To
ensure that the domain has time to disappear before its leading edge emerges from the

heavily doped region, let us set

L _ Lo (8)

Vsiow Vsat = Vsiow

where Ly is the length of the heavily doped region and L, is the length of the fully-

formed domain. Thus the approximate minimum length of the heavily doped region 1s

,4DN1
N, - Ny

Ly = (9)
The value of L, can be estimated by standard methods. (For example, see pp. 661-2
of Ref. [5].) One might expect that making L, larger than the minimum might add
series resistance to the device and thus reduce efficiency. However, for heavily doped
layers of any reasonable thickness the additional serics resistance is inconsequential.

Thus it is not necessary to control the value of L, with high precision, so long as it is

safely above the minimum value.

III. Stabilty of Operation

The performance of the proposed device has been simulated by means of a stan-
dard technique.[6] The simulation is one-dimensional and includes field-dependent
mobility and diffusion coefficients.[7] In its present form the simulation assumes an
instantaneous local relationship between mobility and field, and thus omits the effects
of finite interband and intraband relaxation times.[8](9]{10]. Although such effects are
important in the hybrid and LSA modes, they are less important in the transit-time

mode. The terminal voltage consists of a dc bias (typically 18V) plus a sinusoidal vol-
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tage, the amplitude and frequency of which ae adjusted for optimum operation. The
admittance and power conversion efficiency of the device are found from the resulting

current waveform.

A question of particular interest is whether the several sections of the multi-
domain device will really oscillate in phase, with similar amplitude, or whether one
domain will grow in size and extinguish tne others. In particular, one expects ithat the
device will work best when the sections are most nearly identical, and thai operation
will be disrupted when the sections are dissimilar. We have investigated this question
by means of simulation, in order to determine what degree of dissimilarity can be
tolerated. We find that the critical part of the structure in this regard is the nucleation
noich. If the resistance of one notch is too large, larger domains will grow in that sec-
tion, suppressing oscillation in the others. For a two-domain device operating at 10
GHz, we find that oscillation will start and run stably, provided that the two notches
differ in doping by less than 20%. At higher frequencies, this requirement becoines
less stringent, perhaps because ihe higher doping level of the drift region makes the
difference between the two resistivities less dependent on the notch doping; as a result
doping accuracies of 30-40% can sometimes be alloved. An interesting point is that
near the optimal operating point, neither the device efficiency nor the circuit efficiency
is strongly dependent on E, ; thus a certain amount of imbalance in domain size can be

accepted.

The advent of molecular beam epitaxy has provided a means of achieving accu-
rate doping profiles. We note that it is not the absolute value of doping density that is

important, but rather its repeatability within a single growth. Nonetheless, we must




address the question of whether MBE is capable of the required accuracy. The doping
density in growing epilayers is affected by lattice growth rate, molecular flux of dopant
species, and, at very low doping levels, by variations in background impurities. Both
lattice growth rate and dopant (silicon) flux are expected to be constant within 5% dur-
ing a single growth. Ideally, one would wish the maximum impurity doping (which
arises mainly from residual carbon in the arsenic) to be less than 3-10". However,
what is actually required is not that impurity doping be this small, but rather that it not
vary by more than this in the course of a single growth. For instance, if the actual
impurity level were 6-10", we need only require that its variations be less than 50%.
We do not have direct evidence that background variations are less than this, and
suspect that obtaining such measurements would be difficult. However, there seems no

reason to suspect ab initio that such variations would exist.

Typical simulation results are given in Table 1. The devices being simulated are
those of Fig. 2, the notch concentrations n, and n,, as well as the positions x, and x,
being adjustable. Here R, is the device’s low-field resistance and n is its internal
energy conversion efficiency. Column (a) of the table represents an "ideal" two-domain
device with identical doping notches and no temperature gradients, while column (b)
represents a similar device in which there is a 20% difference in the doping of the two
notches. The output power is almost unaffected by this change. Column (c)
represents a device with ideal doping but with temperature gradients, as will be dis-
cussed in the following section. The evolution of the electric field for these three
cases is shown in Figure 4. The fourth column of the table shows the properties of a
conventional single-domain device of the same area for comparison. For both single-

domain and two-domain devices we find a smaller ratio of device susceptance to




conductance than did Copeland, presumably because we have chosen an nl product
about twice as large. Simulations with larger numbers of domains also show stable

operation and give corresponding results.

By means of simulation it is aiso possible to verify the required thickness of the
heavily-doped domain-killing layers between the sections. Figure 5 shows the
minimum length of this layer for devices similar to that of Fig. 2, but with heavily-
doped layers of various concentrations. (By minimum we mean the thickness below
which stable two-domain operation is not obtained with only dc voltage applied.
Slightly smaller thicknesses are sufficient in ac operation.) The estimate of equation
(7) is shown for comparison. (The value of L, used in (7) is the one observed in
simulation.) Agreement is good considering the simplicity of the estimate, and it

appears that (7) can be used as a convenient lower bound.

IV. Thermal Limitations

Even if the sections of the device are fabricated identically, operation will stll
become unbalanced if the sections differ in temperature. Such effects can be simulated
by including the temperature dependence of mobility and diffusion coefficient.[11] The
results indicate that with N =2 or N =3, stable and efficient operation is obtained when
the temperature difference 8T between the hottest and coolest places in the device is
less than (8T)y = S0K. The performance of a device with this temperature difference is
illustrated in (c) of Table 1 and Figure 4. In principle it should be possible to adjust
the sizes of the doping notches in order to compensate for thermal effects, and thus

achieve more nearly equal domain amplitudes.
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Let us adopt a one-dimensional heat flow model, with the device contacted to a

heat sink at the anode end. Then

2
2 N .
o] <o

where ¢ is the heat power generated per unit volume, L is the total length of the dev-

ice, and K; is the heat conductivity. The heat power per unit volume can be written

g = Vdc [d,_- _ (EchI)(ansalA)

N A = (a+1)F (nl) gf (1

where A is the cross-sectional area and (n/) is the well-known "nl product.” Thus for a

given N the dc bias (determined by «) is limited by

F(al)g viN? g+1

K, 7 < (®T)n (12)

The value of a is also limited by the form of the J-E curve and possible breakdown to

a maximum of about 2.5 [2]. For frequencies above fy, given by

1.75F (nl)q v2N?

- 13
N Ks (8T)y (13)

the value of o allowed by (12) exceeds 2.5, and hence the thermal limit has no effect;
thus for f>fy, the available power is simply given by (7), with a=2.5. However, for
f<fwn, alpha must be reduced to satisfy (12), resulting in

I ee————— —— e —

<fn) (14)

Py
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As typical values for GaAs we may take v, = 10" cm/sec, F =3x10* V/iem, K = 3.
A=003, Zo=50Q, (ni)=10m?, K =50 W/meter-deg.[2](5] The power availahle as a
function of frequency is then as shown in Figure 6, for several values of ¥v. The
power of a single-domain diode is limited by (6) and by its own maximum allowable
temperature rise (87),. Because the latter is larger than (87)y, f, is below the fre-
quency range of interest, and P, which is given by (6) with o = 2.5, is as shown in the
figure. We find that f, =13.4 GHz, f, =302 GHz, f,=53.6 GHz, etc. For f>f,, the
power of the N-domain diode is N? times as large as that of a single-domain diode.
For example, a 3-domain diode should be able to produce 1.8 W at 30.2 GHz, as com-

pared with 0.2 W for a single-domain diode at the same frequency.




V. Conclusions

In principle, an N-domain diode can provide output power substantially larger
than that of a single-domain diode. In favorable frequency ranges the improvement is
on the order of N2. The multi-domain device is in essence a series array of diodes, but
will take up no more space than a single diode, and will be unaffected by parasitics
such as would appear between elements of a side-by-side array. Thermal rise places
limits on operation, but substantial improvements should be possible even within these
limits.

Series connections of Gunn diodes have been considered in the past, but have not
been successful, because of the difficulty of fabricating the devices accurately enough.
In order to achieve stable multi-domain operation, the doping profile must be repeated,
from section to section of the device, with high accuracy. New techniques of fabrica-
tion, such as molecular beam epitaxy, have improved the available accuracy of doping
profiles, and it now appears that the necessary precision can be achieved. The problem
of low impedance also arises with other transit-time devices such as IMPATT diodes,

and the approach of using several in series may be useful in those cases as well.
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Figure Captions

Fig. 1.

Fig. 2. Doping profile of 10-GHz two-domain device. At the points marked
"Ohmic contact” the boundary condition £ =0 is applied. Each heavily-doped layer has
width 1.4 um and the width of each doping notch is 0.4 um. The width of the buffer
section between heavily doped layer and doping notch is 0.2 pm. Values of x;, x sub

2 .n,, and n, are given in Table 1.

Fig. 3. Electric field (a) and charge density (b) of domain entering heavily-doped
region. The solid curves represent the domain before it has entered; the dashed curves

after it has entered.

Fig. 4. Electric field versus position at several times in a cycle, for the devices of

Table 1, columns (a), (b), and (c).

Fig. 5. Minimum L, for devices similar to that of Fig. 2, as obtained from simu-

lation. The estimate of equation (7) is shown for comparison.

Fig. 6. Theoretical output power of multi-domain devices vs. frequency, assum-
ing parameter values as mentioned in the text. The power of a single-domain device is

shown for comparison.




Table 1
Device Data And Simulation Results
(a) (b) (©) (d)

length (um ) x; =105 x; =105 x; =95 x, =10.5

=210 | x,=210 x;=19.0
R, (ohms) 7.90 7.79 7.15 3.95
freqq (GHz) 10 10 10 10
area (cm?) 107 10~ 107 107
ny (10 cm™) 1.0 1.0 1.0 1.0
n, (10 cm™) 1.0 1.2 1.0
n (%) 7.12 7.05 6.89 7.44
Gp (mho) -5.3x107° | -5.26x1073 | —4.76x1073 -1.10x1072
lGDxRo J_l 23.9 2.4 294 23.0
B, (mho) 1.01x10°2 | 1.11x1072 9.30x1073 2.06x1072

Bp

l?o- J 1.91 2.11 1.95 1.87
power (W) 0.468 0.464 0.421 0.243

Device (a): identical sections, no temperature gradient
Device (b). 20% doping notch variation, no temperature gradient
Device (c): identical sections, 50° temperature difference

Device (d): single-domain device
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Abstract

Planar Schottky diodes are integrated with bow-tie
antennas to form a one-dimensional array. The
energy is focused onto the antennas through a
silicon lens placed on the back of the gallium-
arsenide substrate. A polystyrene cap on the
silicon lens reduces the reflection loss. A self-
aligning process with proton isolation has been
developed to make the planar Schottky diodes with
a 1.1-THz zero-bias cutoff frequency. The antenna
coupling efficiency and imaging properties of the
system are studied by video detection measurements
at 94 GHz. As a heterodyne receiver, a double-
sideband mixer conversion loss of 11.2 dB and
noise temperature of 3770°9K have been achieved at
a local oscillator frequency of 91 GHz. Of this
loss, 6.2 dB is attributed to the optical system
and the antenna.
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Introduction

Recently Young et al. demonstrated a millimeter-
wave plasma imaging system based on an array of
bow-tie antennas with microbolometer

detectors [1]. Fig. 1 shows the approach. The
image is focused first through an objective lens
and then through a lens on the back of the
substrate onto a linear array of antennas. The
signal received by each antenna is detected by the
bismuth microbolometer and plotted to form the
image. This array is attractive for plasma
diagnostics because events occur too quickly for
conventional mechanically scanned systems. Imaging
arrays are also attractive for imaging in
astronomy and military applications when the
signal is weak. since they allow more integration
time for each element in the array.
Microbolometers are not sensitive enough for these
applications. However, other sensitive detectors
have been developed. Clifton et al have developed
an excellent monolithic Schottky diode

detector [2], and Wengler et al have demonstrated
an extremely sensitive monolithic superconducting
tunnel junction (SIS) detector [3]. In this paper
we report a monolithic imaging array (see Fig. 2a)
for 94 GHz with gallium-arsenide Schottky-diode
detectors (see Fig. 2c and 2d). Each array has
nine elements. The optical system consists of a
TPX objective lens and a silicon lens on the back
of the gallium-arsenide wafer (see Fig. 2b).

image
Plane
Antenna
Array
—
i -
i
E‘e‘g:"“'e Substrate
i
4 Objective
Obyect Lens

Plone

Fig. 1 Imaging antenna array.
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f Aperture Stop

GoAs Substrate
2.02° Thex

Siticon —
Substrate Lens

TPX
Objective Lens

(b)

v Schottky

A Oiode

Ohmic Contac!

6 um&cimum' o AuGe/Ni/ Ab

(@)

Fig. 2 Imaging antenna array for 94GHz. The
antennas are bow-ties (a), and the Schottky-diode
detectors are at the apex of each bow. The arrays
contain nine antennas and detectors 0.75mm apart.
The optical system is shown in (b), and the diode
is shown from the side in (c¢) and from the end

in (d).

Fabrication

The Schottky diode is the critical element of the
array. Fig. 3 shows the structure. The Schottky
electrode is a narrow stripe 0.8 um wide by 6 um
long (see Fig. 2c and 2d). This gives a high
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periphery-to-area ratio for low series resistance.
The diodes were made on top of a semi-insulating
GaAs substrate. All the epitaxial layers and the
aluminum were grown in situ by molecular beam
epitaxy (MBE). The bottom n* layer is
approximately 1.4 pm thick with a doping
concentration of 3x1018 cm™3, Its thickness is
chosen so that it can be completely converted into
a semi-insulating layer by proton bombardment with
an energy of 300 kevV. The n layer is 0.1 am thick
with a doping concentration of 1017 cm~3. It is
designed to be depleted at zero bias to reduce the
series resistance due to an undepleted n layer.
The doping concentration of the n layer is chosen
to achieve a relatively small tunnel current at
room temperature and a small series resistance in
the n layer. The top aluminum layer is 0.2 um
thick. :

Schottky
Contact

(a)

a

P-oton {sotation
Boundary

n

[a

,—“‘\é 2 ///I

7

(b)

Semi - Insuiating GoAs

n

o1z T

(c) "

Semi- {nsuigting GoAs

T~

E3 tesina

2 auGe/Ni/au Onmic Contact

Eg Proton Bombarded Area

Pig. 3 Schottky diode structure (a), longitudinal
gsection AA’' (b) and cross section BB’ (c).
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The Schottky electrode is defined by a self-
aligning process and proton isolation. The self-
aligning process makes the Schottky electrode
narrow and reduces the gap between it and the
ohmic contact. The idea for this process comes
from the closely spaced electrode (CSE) FET
structure [4]. As shown in Fig. 4a, one
photoresist mask first protects the Schottky
electrode during etching and then defines the
ohmic contact by 1lift off after evaporating
AuGe/Ni/Au. With the proper undercut during
etching, a 0.8 pym wide electrode (see Fig. 2d) has
been achieved. After removing the photoresist, the
ohmic contact is formed by alloying the evaporated
AuGe/Ni/Au onto the n* layer at 430°9C for 30
seconds in an Hj ambient. The contact resistivity
is determined to be 5 u0-cm? by a transmission-
line model [51.

AuGe/NirAy Zvaporanion

| !
l Phc!o*vtim l j Sy A

»
l AuGesNisAy Dhmic Corrget
(a) :

" 3 eroton Somoarced area

Semi-(nsuloting GadAs

J ‘ ‘ ‘ Proton Impiantgtion

Thick
Photoremst

(b)

v
ST ey

Semi-insulgting Ga As

Pig. 4 Diode fabrication: self-aligning process
(a), proton isolation (b), and the thick
photoresist isolation mask (c).

The length of the diode is defined by proton
bombardment (Fig. 4b). Proton isolation avoids the
step coverage problem in mesa etching and is
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easier than selective epitaxy [6,7]. Two

consecutive proton implantations (320 keV with a
5x1014 cm~2 dose and 200 keV with a 3x1014 cm~2
dose) completely isolate our diodes [8]. Fig. 4c
shows the photoresist mask. Note the sharp edge.

The series resistance, the ideality factor and the
barrier height are obtained by a least-mean square
fit of the diode equation to the measured current-
voltage data [9]. After packaging, the measured
series resistance is 15.9 9. This is in rough
agreement with the value calculated from the diode
geometry and the doping, 13 2 [9]). The major part
is contact resistance, 5.1 Q. The ideality factor
is 1.20, and the barrier height is 0.755 eV. The
breakdown voltage (at 1 uA) is 5 V. The estimated
zero~bias capacitance is 9 fF (5.5 fF junction and
3.5 fF parasitic). The cutoff frequency is

1.1 THz.

Fig. 5 shows the assembled array. The antenna
leads are connected by 1-mil aluminum bond wires
to 50-2 striplines, which in turn are connected to
SMA connectors. The silicon substrate lens is
pressed against the chip by the nylon screws. The
white polystyrene cap is put on the silicon lens
to reduce the reflection less [10].

(b)

Pig. 5 Assembled array from the front (a), with
the plastic cap in the foreground, and from the
back (b), showing the stripline IF connections and
the array in the middle.
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Video detection

Most of measurements were done at 94 GHz at
Caltech. The signal is generated by a Gunn diode
and square-wave modulated at 1 kHz. The signal
radiates from a standard-gain horn. A TPX
objective lens focuses the signal onto the array
through a silicon substrate lens. Its focal length
is calculated from the lens geometry to be 8.6 cm.
The system video responsivity is calculated from
the ratio of the diode output voltage to the
signal power incident on the objective lens. The
gain of the horn is calculated fromits

dimensions [11]. The 75~170 GHz measurements are
done at UCLA with a similar set-up, except that
the signal is generated by a backward-wave
¢scillator and modulated at 110 Hz.

System video responsivity versus bias current

Fig. 6 shows the theoretical 94-GHz system video
responsivity versus bias current derived from the
equivalent circuits of a Schottky diode video
detector {9,12,13], which are fitted to the
experimental data in dots by choosing a system
coupling efficiency of 6.2 dB (24%). Table I gives
the detailed loss breakdown. The losses due to
lenses are estimated from data given by Afsar and
Button (14].

= 800 ,
~
> q
Z 800 ]
>
'3 i
&
a 400 b
[72]
t o
- N\
> 200 * R, _=910KQ )
S o R_=100KQ
S ]
0 I 1 {
o7 i0°® 107> ol oM

Bias Current, amps
Fig. 6 The 94-GHz system video responsivity versus
bias current at two different load impedances.
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Table I Estimated system losses

TPX objective lens 0.3 dB reflection loss
0.1 dB absorption loss
Polystyrene matching cap 0.1 dB reflection loss

Silicon lens 1.0 dB absorption loss
Antenna coupling efficiency 4.7 dB (34%)

System coupling efficiency 6.2 dB (24%)
System video responsivity versus frequency

In order to verify the circuit model., the system
video responsivity was also measured from 75-

170 GHz shown in Fig. 7. The solid line is
calculated by the equivalent circuits of the a
Schottky diode video detector [9,12]. It also
includes the effect of the polystyrene cap [10].
Uncertainties in power-meter calibration factors
and system losses contribute to the scatter in the
experimental points. The 3dB cutoff frequency of
the diode is about 140 GHz. One can see the
circuit model works quite well over a fregquency
range of 75-170 GHz even though the skin effect is
not taken into account. This is because all the
metal and the epi-layer thickness is less than or
equal to the skin depth. It also proves that the
bow-tie antenna has an octave frequency bandwidth
at least.

900k I i T hl |

i

400

n
Q
Q

1 i ! A
60 80 I00 126 140 160 180

Frequency, GHz

Fig. 7 System video responsivity versus frequency
on a log scale.
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System video responsivity versus aperture size

Fig. 8 shows the system video responsivity versus
front aperture size. In this experiment, an
aluminum plate with a hole in the middle serves as
the aperture stop. For convenience, it is put on
the backside of the objective lens. However, the
input power is calculated from the front apercure
size determined from the ray tracing diagram in
Fig. 2b. By the same ray tracing diagram, the
maximum angle e inside the silicon lens is found
for each aperture size. This is also shown in

Fig. 8. For aperture sizes larger than 3.6 cm, the
maximum angle remains 59°, limited by the
substrate lens. The diode is biased at 10 uA with
a 100 K2 load resistance. Fig. 8 shows a peak
system video responsivity of 820 V/W at a 2.7 cm
front aperture. This corresponds to a maximum
angle of 450 (f/2.4 objective lens).

i000 . , . 30
2 scch 17° 8
S 2
.>_: /,' —4———..——_:6(: g
5 &CCH N ~ ©
2 —/ . \\ 9
5 , . 445 ©
Q 4 - . g
S acop i — “a
x o - 43Cc €
o o g
2 200t - 1. =
> -2
O —_— 1 " e}
| 2 3 a 5 6"
D,cm

Pig. 8 System video responsivity and maximum angle
inside the silicon lens versus front aperture.

This peak can be understood by considering
spillover efficiency and taper efficiency [15].
The spillover efficiency causes the responsivity
to decrease for small apertures because the Airy
spot at the focal plane is larger than the
effective area of the antenna. The power outside
the antenna effective area will not be received
efficiently. On the other hand, the responsivity
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goes down for large apertures because the maximum
angle is larger than the antenna beamwidth. The
power outside the main beam will not be coupled
efficiently into the detector.

Angular field of view of the imaging system

rhe imaging properties are obtained by studying
both the angular field of view and the spot
response. The angular field of view has been
measured by rotating the entire receiver about. the
center of the objective lens as shown in

Fig. 9 [16]. In this way it is possible to shift
the focal spot from one cntenna to the next.

Fig. 10 shows the peak angle for each antenna and
the system video responsivity for each antenna at
its peak angle. The front aperture is 3 cm. The
full field of view determined from the half power
points is approximately 409, with an angulear
separation between adjacent antennas of 7.49., The
off-center antennas roll off because rays miss the
substrate lens (see Fig. 9). A larger substrate
lens should reduce this loss.

cm O

rr Objective Sticon
2 Lens Substrate -
Lens
. .
-1 o] | 2 3

cm
Fig. 9 The ray tracing diagram for a plane wave
incident at an angle. Each tick at the interface
represents an antenna. The rav on the top misses
the silicon lens after focusing by the objective
lens.
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Fig. 10 Angular field of view of the 94-GHz
imaging system with a 3-cm front aperture.

Spot response of the imaging system

Using the same rotation technique, we measure the
spot response of the imaging system by monitoring
the output of the center antenna while the
incident angle changes. Fig. 11 shows the measured
spot response in the H-plane, which corresponds to
a rotation axis perpendicular to the imaging line.
It also shows the theoretical Airy Pattern ([(171].
Although we use a 3-cm front aperture, the
experiment data in circles fit the Airy pattern of
a 2.5-cm aperture. Presumably this is due to non-
uniform illumination of the aperture by the bow-
tie antenna and edge effects of the aluminum stop.
The triangles in Fig. 11 are the experimental data
obtained by normalizing the output voltage from
the adjacent antenna p7sition to its peak system
video responsivity shown in Fig. 10, when a plane
wave is normally incident upon the objective lens.
These also lie on the Airy pattern for a 2.5-cm
aperture.
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Fig. 11 Spot response for the 94-GHz imaging
system with a 3-cm front aperture. Data in circles
are obtained by the rotation technique. Data in
triangles are obtained by the array with a plane
wave normally incident upon the objective lens.
The theoretical Airy patterns are shown with a
solid line for a 3-cm aperture and a dash line for
a 2.5-cm aperture.

Heterodyne detection

For double~side band heterodyne detection
measurements, a dual-beam interferometer is used
as a diplexer to combine the signal and the LO
power into a single beam. It is designed to
combine beams with negligible loss and suppress
any LO noise within the sidebands [18]. The LO
power at 91 GHz is generated by a klystron and can
be adjusted by an attenuator. A low~noise IF
amplifier chain with 80 dB gain and 106°K noise
temperature amplifies the IF power so that it can
be measured by the HP435B power meter. It has a
1.4-GHz center frequency and a 200-MHz bandwidth.
The mixer conversion loss and noise temperature
are determined from hot and cold load
measurements [19]). Microwave absorber (ECCOSORB
CV3) at room temperature serves as the hot load.
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The cold load is the same absorber, soaked in
liquid nitrogen in a styrofoam box and reflected
to the receiver by a metallic mirror. The absorber
must cover the whole antenna beamwidth to get an
accurate measurement. The mixer conversion loss
and noise temperature include the loss and the
noise from the mixer and the optical system but
not from the IF amplifier chain.

Fig. 12 shows double-sideband mixer conversion
loss and noise temperature versus LO power. Both
conversion loss and noise temperature go down when
the LO power increases. A DSB mixer conversion
loss of 11.2 dB and noise temperature of 33700K
have been achieved with an LO power of 9 dBm. This
conversion loss is divided into the following
losses. The system coupling efficiency is 6.2 4B,
inferred from video detection measurements. The
intrinsic conversion loss is 0.9 dB for a
proadband double-sideband mixer [20]. The RF and
IF mismatch losses have been estimated from a
computer program provided by Kerr and 3Jiegel [21].
The calculated RF impedance is 80-j36 2, giving an
RF mismatch loss of 0.2 dB and a series resistance
loss of 1 dB. The calculated IF impedance is

150 @, giving an IF mismatch loss of 1.2 dB and
series resistance loss of 0.5 dB. This leaves

1.2 dB unaccounted for. This is probably due to
the bond wires and IF connections. Table II gives
the complete conversion loss breakdown. We also
made single-sideband measurements with a Gunn-
diode sources as a check. The conversion-curves
were similar in shape. The best SSB conversion
loss was 14.4 dB, which is 3.2 dB worse than the
DSB figure.

Table II The breakdown of DSB conversion loss

System coupling efficiency 6.2 dB
Intrinsic conversion 1lcss 0.9 dB
RF mismatch 0.2 dB
IF mismatch 1.2 dB
RF series resistance loss 1.0 dB
IF series resistance loss 0.5 4B
Additional loss 1.2 db

DSB mixer conversion loss 11.2 dB
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DSB Conversion Loss, dB

-8 -4 0 4 8
LO Power, dBm

(a)

DSB Noise Temperature, x |03 °K

Q

1 1 1 L 1 I
-8 -4 0 4 8
LO Power, dBm

(b)

Fig. 12 Double-sideband mixer conversion loss (a)
and noise temperature (b), versus local oscillator

power.

The total receiver noise temperature including IF
amplifier noise is 5170°K. As a passive total
power radiometer, the minimum detectable
temperature is 0.379K with one second integration
time and 200 MHz bandwidth.
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Conclusion

This work has led to develop a compact millimeter-
wave imaging array with high sensitivity. The
measured diode conversion loss and system loss are
both about 3 dB worse than the best room-
temperature waveguide systems with whisker
contacts [22]. The three obvious places for
improvement are in the diode series resistance,
the IF mismatch, and the antenna efficiency.
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High-Accuracy Tuning of Planar Millimeter-Wave
Circuits by Laser Photochemical Etching

D.J. EHRLICH. D. F. WILLIAMS. J. H. C. SEDLACEK. M. ROTHSCHILD. a\n
STEVEN E. SCHWARZ. SENIOR MEMBER, [FEF

Abstract— A new laser photochemical reaction for etching of molybde-
num has been applied to the in siru tuning of coplanar waveguide (CPW)
structures used in millimeter wave integrated circuits. Tests on structures
operating at 33 GHz have confirmed low insertion losses and demon-
strated anp improvement in set accuracy by a factor of 10-30 relative to
previously developed sirip or solder tuners.

ASER direct-writing techniques based on rapidly scanned

microscopic etching and deposition reactions have been
recently developed [1]. By avoiding multistep lithography and
conventional pattern transfer, these techniques provide impor-
tant leverage via final-step microfabrication operations such as
logic personalization, fault avoidance, and defect repair on
integrated circuits. In addition, this technology presents new
capabilities for trimming and tuning of analog devices. For
these applications, advantages of direct-write etching over
previous physical-probe and laser ablation methods are low
induced temperature, greater spatial resolution, and elimina-
tion of debris and nonselective substrate damage.

Here we describe the use of a recently developed laser
direct-write etching reaction (2], [3] to achieve high-accuracy
tuning of planar millimeter-wave circuits. With the recent
improvements of these circuits, adjustable elements are
becoming important as a means to control limiting parasitics.
We find that, in comparison to oth.r methods currently under
development, laser etching permits tuner settabilities of one-
to-two decades greater accuracy. The new method could be
useful as an automated post-fabrication trimming operation to
produce highly precise matched devices.

Laser direct-write tuning was demonstrated with the planar
circuit shown in Fig. 1. Incident radiation is received by the
slot antenna. A quarter-wavelength section matches the
antenna impedance (3.3 Q) to the impedance of a silicon beam-
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Fig. 1. Tunable detector circuit. The incident radiatuon creates a voltage
across the slot antenna. The (approximately) A/4 section matches the slot
impedance to the incremental resistance of the diode. The length of the
tuner / is adjusted to compensate for the parasitic diode capacitance by
stepwise photochemical etching of the molybdenum backshort.

lead diode biased to an incremental resistance of 428 Q. The
coplanar waveguide (CPW) tuner is then used to compensate
for the parasitic shunt capacitance of the diode (Metallics
Corp.. type MSS 40, 140-B10). The CPW had a characteristic
impedance of 50 Q, a total width of 296 um. and a center
conductor width of 148 um. The circuit fabrication process is
described in [4]. Laser tuning is accomplished by stepwise
etching of a 500-nm-thick molybdenum shorting film sputtered
over the CPW. Scanning of the focused laser beam across the
guide successively exposes more of the CPW below the Mo
layer, changing the effective position of the Mo backshort
along the length of the CPW section. The etching process
exhibits high material selectivity, leaving the underlying 1-
um-thick gold film and sapphire substrate intact.

The laser direct-writing instrument was similar to those
described previously [1]. A 600-mW 488-nm wavelength

0741-3106/87/0300-0110301.00 © 1987 IEEE
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heam was scanned across the tuner in the presence of a 200-
orr flowing Cl; ambient. Scanning was performed with u
computer-controlled translation stage at a speed of 250 pm/s.
In this first demonstration, the laser beam was focused to a 2-
wm Spot. and the scan separations were set at 1 um. With
optimized performance these values can be reduced to <1 um
and <0.25 um. respectively.

The laser etching of molybdenum thin films with a Cl,
ambicnt is a highly precise photochemical reaction which has
heen developed recently {2), [3]. The mechanism comprises
two components. In one. the argon-ion laser photolyzes both
the vapor ambient and a Cl; adsorbed surface layer. This
generates reactive Cl atoms and bypasses the high-temperature
thermal dissociation of Cla which would otherwise be re-
quired. In the second component, the laser generates moderate
localized heating of the molybdenum film, accelerating sur-
face reactions which evolve volatile molybdenum chlorides.
The ratio of thes® two components is continuously adjustable
hv variation of the incident laser power, and is chosen to
maintain an optimal trade-off in temperature versus resolution
and ctching rate. We note that several other halide-based laser
etching reactions in which there is no photochemical compo-
nent are not acceptable for the current application [3]. In the
demonstration here the tuning rate was limited by the software
in the control computer, rather than the reaction rate (or stage
spced), and a relatively low-power level, favoring low
temperature, was chosen. More detail about the relevant
chemical kinetics can be found in [2] and [3].

In the present demonstration the circuit was operated at 33
GHz and the diode voltage response V was monitored in situ
during laser etching of the Mo backshort. Fig. 2 represents the
experimentally measured variation of V' with tuner length /.
V(l) s normalized to the diode response for the untuned
device V(I = 0). A more than six-fold improvement is noted
at [ = 0.28 N (N is the guide wavelength at 33 GHz).

An cquivalent-circuit model was used to analyze the circuit
in Fig. 1. Two variable parameters, namely the parasitic
inductance of the diode L, and the quality factor Q of the
wiaveguide were used to fit the calculated tuning curve to the
experimental data in Fig. 2. The quality factor Q is an intrinsic
property of the tuner, and is defined [5] as the ratio of the
cnergy stored to the energy dissipated per radian for a CPW
section whose length is [ = mN4 (m = 1,2,3 --+). The
other electrical parameters of the diode were obtained from the
manufacturer, and the rest of the parameters of the cquivalent
arcuit were derived from low-frequency measurements of
scale models. The best-fitting calculated tuning curve (Fig. 2)
yiclded the values L, =004 £ 00laHand Q = 130 + 20.
Comparison of this value of Q with that obtained with other
backshort, and tuning methods revealed that Q was limited by
the ohmic conductor loss of the CPW section and that the
vontribution of the Mo backshort to ohmic losses was
neghgible. Therefore the laser tuning method did not nega-
tvely affect device performance as represented by Q. This
effect comes about because of deep (>25 pum) penctration of
the waves into the backshort. which arises from gencral

considerations of boundary values and Maxwell's equations
[6].

HIGH - ACCURACY TUNING OF PLANAR MILLIMETER WAVE CIRCUTTS
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Fig. 2. The measured and caiculated duxde output $'(/4 normaiized to the
output of an untuned circuit V(/ = 0), as a function of laser-etched tuner
length / in units of guide wavelength X at 33 GHz. The calculated best-
fitting tuning curve was obtained with a value Q = 130, Note that the Q
value is not degraded by the Mo backshort.

The advantages of laser tuning versus other techniques
being explored such as solder and strip tuning {6] can be
further understood as follows. An ideal tuner, when used to
compensate for a shunt susceptance B, will have an admittance
Yunee = —J B, and the total admittance seen by the circuit will
be zero, resulting in maximum power transfer from the source
to the load. In practice. Yiper = —JB + JABuyner * Guner
where A B, Is an error arising from inaccuracy in backshon
position and G, 1S 2 conductance due to losses. The total
admittance seen by the circuit is thus jABynee + Guuner- [t s
clearly desirable to reduce both AByn and Guyner Guner 15
directly related to Q and. as shown above. is insensitive to the
Mo film. The magnitude of AB... on the other hand. is
rapidly reduced with improved settability in backshort posi-
tioning A/l. In the solder and strip tuning methods A/ = 32
pum, with projected improvements to the 10-um range. In
contrast, the laser tuning had A/ = 1 um with demonstrated
(3] capabilities of A/ = 0.25 pwm. This [-2 orders of
magnitude better settability and the accompanying reduced
value of A By, has a dramatic effect on the maximum power
deliverable to the load.

Fig. 3 illustrates this improvement calculated for a simple
circuit where the tuner is placed in shunt with a load
(conductance Ging). a source (conductance G, .,we). and a
parasitic element (susceptance B), and where G,y = Guure
= Y,, with Y, being the characteristic admittance of the tuner.
P neq 18 the power delivered to the load when the tuner is used,
and P, is the power delivered to the load with no tuner and
with G chosen for maximum power transfer. In Fig. 3 the
improvement in performance. P, ../ Po. due to tuning 1s
plotted as a function of the parasitic susceptance B in units ot
Yy, for the case where f = 36 GHz and Q = 100. Itis evident
from Fig. 3 that tuning with A/ = [ pm (unopumized laser
tuning) s vastly superior to tuning with A/ = 10 um
(opumized solder or strip wning). In particular, large 1m-
provements are achieved for B/Y, < - 10. Sumilar results are
obtained for other values of fand Q. In general. the larger the
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Fig. 3. Improvement in power output of the circuit, P Po. as a function

ol the parasitic susceptance B (in units of the charactenistic admittance Y,).
tor a model circuit with G = Gy = Y. operating at a frequency / =
36 GHz and tuner Q of 100. The two values of settability Af correspond to
the laser wning (I um) and solder or strip tuning (10 um) techniques. The
desirability of a low value ol A/ is evident

J/ and the smaller the Q. the larger the range of | B/ Y,| over
which the A/ = 1-um curve is significantly higher than that of
Al = 10 um (see [6] and [7] for further details of the
calculations).

In conclusion, we have demonstrated highly efficient in situ
tuning of a millimeter-wave circuit with a commercial laser
operating at visible wavelengths. The technique involves
stepwise photochemical etching of a thin molybdenum film,
which acts as a backshort in a coplanar waveguide tuner
operating at 33 GHz. Straightforward application of the laser
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etching reaction in chlorine will permit adjustment of individ-
ual tuners in several minutes time. In these first experiments
laser tuning to a settability of 1 um, 10-30 times better than
that of other tuning methods, was demonstrated  without
inducing any degradation in the Q of the waveguide.
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